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Goal: Non destructive monitoring of industrial structures called
waveguides modeling pipes, optic fibers, metal plates, boat hulls,
aircraft parts, train tracks...

Figure: Practitioners monitoring Figure: Practitioners monitoring
of a pipeline. of a aircraft part.
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Goal: Non destructive monitoring of industrial structures called
waveguides modeling pipes, optic fibers, metal plates, boat hulls,
aircraft parts, train tracks...

Figure: Width defect in a 3D Figure: Width defect in a 3D
acoustic pipe. elastic plate.
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Goal: Non destructive monitoring of industrial structures called
waveguides modeling pipes, optic fibers, metal plates, boat hulls,
aircraft parts, train tracks...

Figure: Width defect in a 2D acoustic pipe or elastic plate.
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State of the art

Usual experimental setup:

Ty_) Y [ h(x)
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Measurement of u + u® on a surface or on a section.
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State of the art

Usual experimental setup:

e
,F_) . uinc /\/N us \/\/ Ih(X)

tot — umc

Measurement of u + u® on a surface or on a section.

» Fixed frequency, different incident waves: Linear sampling
method [Corron, KirscH 96] [BOURGEOIS, LUNEVILLE 08],
Far-field asymptotic developments [Debiu, MCLAUGHLIN 06]...

= Multi-frequency, one incident wave: MUSIC algorithm [Bao,
Trikt 13], Far-field asymptotic developments [Borcea, NGUYEN
16]...
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State of the art

Usual experimental setup:

e
,F_) . uinc /\/N us \/\/ Ih(x)

tot — umc

Measurement of u + u® on a surface or on a section.

» Fixed frequency, different incident waves: Linear sampling
method [Corron, KirscH 96] [BOURGEOIS, LUNEVILLE 08],
Far-field asymptotic developments [Debiu, MCLAUGHLIN 06]...

" ’Multi—frequency, one incident wave:‘ MUSIC algorithm [Bao,
Trikt 13], Far-field asymptotic developments [Borcea, NGUYEN
16]...

Commun point: all these methods avoid some frequencies, called
resonant frequencies, of the waveguide.
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@ Perfect waveguides and resonances
Modal decomposition
Resonant frequencies

® Perturbed waveguide - acoustic case
Approximation of the forward problem
Inverse problem and numerical reconstructions

® Tools to reconstruct defects in elastic waveguides
Modal decomposition
Adaptation of the inversion method

O Ongoing projects
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@ Perfect waveguides and resonances
Modal decomposition
Resonant frequencies

5/34



Perfect waveguides and resonances
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Wave propagation in perfect waveguides

Let @ =R x (0, h) be a perfect waveguide where h > 0 denote the
width of the waveguide.
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Wave propagation in perfect waveguides

Let @ =R x (0, h) be a perfect waveguide where h > 0 denote the
width of the waveguide.

A wavefield u propagates in €2 at frequency k > 0 according to the
Helmholtz equation:

Au+ k?u=—f inQ,
O,u=0 on 09, (1)
u is outgoing.
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— if n=20,

— v2 cos n7ry> else
Y= — — .
vh h

Then u(x,y) = Z un(x) ¢n(y), and
neN

with  k, =/ k? — ——. (3)

u:: + kr21un = fna : n?r2
up is outgoing, h?
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— if n=20,

V2 nmy
y— ﬁ cos (T) else.
Then u(x,y) = Z un(x) ¢n(y), and

neN
2.2
ki =fo i == T ()
up is outgoing, h?

i ikn|x—
= up(x) = /]R Golo 5)fols)ds,  Galix.5) = 5-n(D)ele
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Then u(x,y) = Z un(x) ¢n(y), and

neN
2.2
ki =fo i == T ()
up is outgoing, h?

i ikn|x—
= up(x) = /]R Gol 5)fols)ds, Galix.) = 5-n(D)el

7/34



Perfect waveguides and resonances

[e]e] lo

— if n=20,

V2 nmy
y— ﬁ cos (T) else.
Then u(x,y) = Z un(x) ¢n(y), and

neN
" 2 2.2
u, + knu, = fo, . . ,  n°m
{ up is outgoing, with  fn = [k h2 - (3)

= up(x) = /]R Ga(x, 5)fu(s)ds, Gn(x,s)=2Lkngon(1)e"kn\X—s\.

= If n < kh/m, the mode n is called propagative.

» If n > kh/m, the mode n is called evanescent.
7/34
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Reconstruction de h

We measure ||ul| 2 for all k> 0:
loc

60

40

=
=
N

-~ ky =0, k=2n/h

20 ——— ks =0, k =3n/h

Figure: Amplitude of u with respect to k. We identify h by looking at
explosions of [|ull2 .

lu]| = 400 & k=0 < k:”%. (4)
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Experimental setup at Institut Langevin
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Experimental setup at Institut Langevin

Aluminum
membrane

Nickel

_______ . mesh
q bar

Figure: [BaLoGuN 07] Left: 3D plate with two different widths. Right:

amplitude of waves along the dotted line for different frequencies.
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Experimental setup a

Aluminum

330pm membrane

h2 ~~h1 /

Nickel

------- - mesh
q bar

Figure: [BaLoGuN 07] Left: 3D plate with two different widths. Right:
amplitude of waves along the dotted line for different frequencies.
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Perfect waveguides and resonances Perturbed s f soing projects

[ Je]
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Figure: [CEes 12] Left: Experimental reconstruction of a width defect.
Right: amplitude of explosions near resonances.
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Modeling of the problem

Figure: Parametrization of a slowly increasing waveguide. A source
generates a wavefield u measured on the bottom of the waveguide.
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Modeling of the problem

Figure: Parametrization of a slowly increasing waveguide. A source f
generates a wavefield u measured on the bottom of the waveguide.

k=30.8
0.1

—6 —4 -2 0 2 4 6

Figure: Numerical simulation of the amplitude of |u| for different
frequencies k.
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- acoustic case

Figure: Parametrization of a slowly increasing waveguide. A source f
generates a wavefield u measured on the bottom of the waveguide.

k=231
0.1

—6 —4 -2 0 2 4 6

Figure: Numerical simulation of the amplitude of |u| for different
frequencies k.
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Modeling of the problem

Figure: Parametrization of a slowly increasing waveguide. A source f
generates a wavefield u measured on the bottom of the waveguide.

k=312
0.1

—6 —4 -2 0 2 4 6

Figure: Numerical simulation of the amplitude of |u| for different
frequencies k.
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Modeling of the problem

Figure: Parametrization of a slowly increasing waveguide. A source f
generates a wavefield u measured on the bottom of the waveguide.

k=315
0.1

—6 —4 -2 0 2 4 6

Figure: Numerical simulation of the amplitude of |u| for different
frequencies k.
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Modeling of the problem

Figure: Parametrization of a slowly increasing waveguide. A source f
generates a wavefield u measured on the bottom of the waveguide.

k=318
0.1

—6 —4 -2 0 2 4 6

Figure: Numerical simulation of the amplitude of |u| for different
frequencies k.
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Modeling of the proBIem

Figure: Parametrization of a slowly increasing waveguide. A source
generates a wavefield u measured on the bottom of the waveguide.

k=321
0.1

—6 —4 -2 0 2 4 6

Figure: Numerical simulation of the amplitude of |u| for different

frequencies k.
10/34



es and resonances Perturbed waveguide - acoustic case
o

Outline

® Perturbed waveguide - acoustic case
Approximation of the forward problem
Inverse problem and numerical reconstructions
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Change of variable

In the perturbed waveguide 2, the wavefield satisfies the equation

Au+ k’u=—f inQ,
o,u=0 on 09, (5)
u is outgoing.
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yuides and resonances Perturbed waveguide - acoustic case

Change of variable

In the perturbed waveguide 2, the wavefield satisfies the equation

Au+ k’u=—f inQ,
dyu=0 on 09, (5)
u is outgoing.
We define the mapping ¥(x, y) = (x, h(x)y) from the perfect
waveguide QP =R x (0,1) to Q:

Figure: Mapping from QP to Q.
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Change of variable

In the perturbed waveguide 2, the wavefield satisfies the equation

Au+ k’u=—f inQ,
dyu=0 on 09, (5)
u is outgoing.
We define ¢(x, y) = (x, h(x)y), and in the perfect waveguide
QP =R x (0,1), v = v o satisfies

1 h'"h —2(H')?
OwxV + k2v—{—h26yyvh3()y8yv
(H)? - 2K oD
+ Y Oyyv —h/h2y0yxv =—fou in QY (6)
v = +0xvL,—p(x) on 9QP,
v is outgoing.

We denote w the solution of the equation without the green terms.
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guides and resonances Perturbed waveguide - acoustic case

Approximation of the solution

We use the modal decomposition of w and
VneN w!(x) + kn(x)*wa(x) = —gn(x) inR.  (7)

We recognize a Schrédinger equation [O1vER 61] [OLVER 63].
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= If ky(x)? > 0 for all x € R, the Green function is given by

GiPP(x,s) := Ch(s) exp (i / kn
S

> . (propagative)

13/34



uides and resonances Perturbed waveguide - acoustic case

Approximation of the solution

We use the modal decomposition of w and
VneN w!(x) + kn(x)*wa(x) = —gn(x) inR.  (7)

We recognize a Schrédinger equation [O1vER 61] [OLVER 63].
= If ky(x)? > 0 for all x € R, the Green function is given by

GiPP(x,s) := Ch(s) exp (i / kn
S
= If ky(x)? < 0 for all x € R, the Green function is given by

GiPP(x,s) := Cu(s) exp (— / kn
S

> . (propagative)

) . (evanescent)

13/34



Perturbed ide - acoustic case
000000

Approximation of the solution

We use the modal decomposition of w and
VneN w!(x) + kn(x)*wa(x) = —gn(x) inR.  (7)

We recognize a Schrédinger equation [O1vER 61] [OLVER 63].
= If ky(x)? > 0 for all x € R, the Green function is given by

GiPP(x,s) := Ch(s) exp <i / kn
S
= If ky(x)? < 0 for all x € R, the Green function is given by

GiPP(x,s) := Cu(s) exp (— / kn
S

= |f there exists a point x* such that k,(x*) =0,

G PP(x,s) := Ch(s) A (— (g /XX k,,>2/3) , (loc. resonant)

*

> . (propagative)

) . (evanescent)

where A is the first kind Airy function and x* < x <'s.
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Forward problem

Theorem - Approximation of u in slowly varying waveguides
[BONNETIER, NICLAS, SEPPECHER, VIAL 22]

Let r > 0, f € L%(Q,), h € C3(R) with A" compactly supported.
For almost every frequencies k > 0, if ||h'||W1,1(R) is small enough
then

= The Helmholtz problem in the perturbed waveguide has a
unique solution u € H2 (Q).

= This solution can be approximated by

w2(y) = Y ([ G0 5)en(s)ds) on (507 ) - @

neN

= There exists a constant C > 0 such that

It = ™l q,y < ClIA TweagylIfllizg,): (9)
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Numerical illustration

Figure: Wavefield approximation of Re(u) in a slowly varying waveguide
at the frequency k = 31.5 using the modal decomposition of u*"P and
each G;PP.
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Figure: Wavefield approximation of Re(u) in a slowly varying waveguide
at the frequency k = 31.5 using the modal decomposition of u*"P and

each G;PP.
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Numerical illustration
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Figure: Wavefield approximation of Re(u) in a slowly varying waveguide
at the frequency k = 31.5 using the modal decomposition of u*"P and

each G;PP.
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Figure: Illustration of a tunneling effect in a perturbed waveguide. 163
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Locally resonant point x*

k=312
% 4 —2 o 2 4 6
0.1

k=315
% 4 —2 o 2 4 6
0.1

k=318
07

6 -4 -2 0 2 4

(o)}

Figure: Wavefield |u| for different locally resonant frequencies k. The
position x = x* is marked in red.
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Locally resonant point x*

k=312

0.1
0
0.1
0

Figure: Wavefield |u| for different locally resonant frequencies k. The
position x = x* is marked in red.

|
[

|
N

|
N
o
N
S
()}

|
<)

|
~

|
N
o
N
~
()}

|
<)

|
EN

|
N
o
N
N
[e)}

If we recover the position of x*, we know the local width

kn(x) =0 & h(x*):n%. (10)
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Filtering of measurements

Figure: Measurements and filtering of the data for a locally resonant
mode.
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Filtering of measurements
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Figure: Measurements and filtering of the data for a locally resonant
mode.
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Filtering of measurements

0.1
0 at the
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2 - ] . .
0 | | \ Filtering of
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Figure: Measurements and filtering of the data for a locally resonant
mode.
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Reconstruction of x*

Doing a Taylor expansion on GZPP, we notice that around x*, the
data d satisfy

d =~ fy * [CNA (— (g /XX kN) 2/3>] ~ zA(a(x — x*)), (11)

where z, & > 0. We minimize the function

J(z,0,x*) = ||zA(a(x — x*)) — d||% (12)

19/34



ides and resonances Perturbed waveguide - acoustic case

0000e00

Reconstruction of x*

Doing a Taylor expansion on GZPP, we notice that around x*,

data d satisfy

d =~ fy* [CN.A (— (g /X): kN>2/3>] ~ zA(a(x — x¥)),

where z, & > 0. We minimize the function

J(z,0,x*) = ||zA(a(x — x*)) — d||%

—d
—zA(a(x — x*))

N
T

I I i I
072 -15 -1 -05 0 05 1 15 2 25 3 35 4

the

(11)

(12)

Figure: Comparison between the data d and the Airy function obtained

by minimizing J.
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Stability of the reconstruction

Theorem - stability of the reconstruction of x*
[N1C SEPPECHER 22|

We denote d = |u(x,0)| + &(x) for x € | := (x* — R,x*+ R). If

lell 2y and [|A']lwr1 gy are small enough, then

= The function J has a unique minimum denoted
(2%PP | 02PP | x*:2PP).

= There exist constants C;, C; > 0 such that

" = x| < W [y ey + Collelizgy

= There exists a neighborhood V C R? such that a gradient
descent starting in V' converges to (z%PP, a®PP, x™3PP),

Ongoing projects
000000

(13)
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Numerical results

For different locally resonant frequencies k > 0, we reconstruct x*
and then h(x™).

T~

Figure: Reconstruction of slowly varying varying defects. Black: initial
shape. Red: reconstruction slightly shifted.
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Numerical results

For different locally resonant frequencies k > 0, we reconstruct x*

and then h(x™).

_— T~

Figure: Reconstruction of slowly varying varying defects. Black: initial
shape. Red: reconstruction slightly shifted.

”h,”Wl,oo 0.05 5 ||5||,_z(,) 1% | 15%
k non résonant | 5% | 54% || k non résonant | 6.2% | 45%

Figure: Relative reconstruction errors.
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Numerical results

For different locally resonant frequencies k > 0, we reconstruct x*
and then h(x™).

_— T~

Figure: Reconstruction of slowly varying varying defects. Black: initial
shape. Red: reconstruction slightly shifted.

[ yis ] 005] 5
k non résonant | 5% | 54%
k résonant 1% | 9%

k non résonant | 6.2% | 45%
k résonant 1.3% | ™%

Figure: Relative reconstruction errors.
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® Tools to reconstruct defects in elastic waveguides
Modal decomposition
Adaptation of the inversion method
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Modal decomposition using Lamb modes

A source f generates an elastic displacement field u satisfying

V-o(u)+w?u=—F inQ,
o(u)-v=0 on 09,
where o the stress tensor depending on the Lamé parameters of

the waveguide, w the frequency.
Modal decomposition at width h for almost every w € R:

u(x,y) =Y _(an(x)un(y), bn(x)va(¥)). (15)

n>0

(14)
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Modal decomposition using Lamb modes

A source f generates an elastic displacement field u satisfying

V-o(u)+w?u=—F inQ,
o(u)-v=0 on 09,
where o the stress tensor depending on the Lamé parameters of

the waveguide, w the frequency.
Modal decomposition at width h for almost every w € R, :

= > _(an(x)un(y); ba(x)va(¥)), (15)

n>0

(14)

(up, vn) are Lamb modes associated to the wavenumber k, € C.

Figure: Elastic deformation of a plate e
and an anti-symmetric Lamb mode.

ik,,x(

un(y), va(y)) for a symmetric
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Adaptation of locally resonant frequencies

Main steps of the inversion using locally resonant frequencies

= Choose a locally resonant frequency

Approximate the wavefield generated by a known source
term in the waveguide

Fit the three-parameter Airy function to the
measurements to recover the location of x*

Reconstruct the width of the waveguide using the
» knowledge of x* and h(x™) for different locally resonant
frequencies
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Main steps of the inversion using locally resonant frequencies

Choose a locally resonant frequency‘

Approximate the wavefield generated by a known source
term in the waveguide

Fit the three-parameter Airy function to the
measurements to recover the location of x*

Reconstruct the width of the waveguide using the
» knowledge of x* and h(x™) for different locally resonant
frequencies
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Real(kn(x))h(x) Imag(kn(x))h(x)

| —— propagative —— evanescent —@- resonant |
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Tools for elasticity
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Elastic case: R(w, h, k,) =0

L
52 AT
0 ——1 ||
1 0
W
8
Real(k Imag(kn(x))h(x)
—— propagative —— inhomogeneous —— evanescent
-o-L - T -0 LGV
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Modified Lamb basis

@00

Proposition [AKIAN 22] [BONNETIER, NICLAS, SEPPECHER 22]

Lamb modes associated to the frequency w at width h form a
complete family if and only if wh is not a resonant point.
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Modified Lamb basis

(e]e}

Proposition [AkIAN 22] [BONNETIER, NICLAS, SEPPECHER 22]
Lamb modes associated to the frequency w at width h form a
complete family if and only if wh is not a resonant point.

= Longitudinal point (L): k, =0, u, = 0. New Lamb basis from
[PAGNEUX, MAUREL 06]
— U .
unp = m, Vh = Vp.
= Transverse point (T): k, =0, vy/kn = 0. New Lamb basis
from [PacNEUX, MAUREL 06]

— Uy ,v KnVn
Up = P Vp = Tom v’
= Zero-group velocity point (ZGV): k, # 0. New Lamb basis
ZH=U1—U2 Vl,=V1+V2 U = uy + uo v = V1—V2.
2 ’ 2 ’ 2<U1,V1>7 2<U1,V1>
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Approximation of the wavefield

Modal decomposition of the wavefield:

u(x,y) = Y (an(x)tn(x, ¥), ba(x)Va(x, y))- (16)

n>1
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Approximation of the wavefield

Modal decomposition of the wavefield:

u(x,y) = Y (an(x)tn(x, ¥), ba(x)Va(x, y))- (16)

n>1
= Longitudinal point (L): by ~ G* * Fy, and
up = zA(a(x — x¥)). (17)

= Transverse point (T): ay &= Gx* * Fy, and

uy = zA(a(x — x¥)). (18)
= Zero-group velocity point (ZGV):
2 B 2 A(alx - X)) (19)
C1 ()
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Figure: Reconstruction of two width profiles. Black: initial shape. Red:
reconstruction slightly shifted for comparison purposes.

7 Toytos 9.10 %[ 3.10°3 | 7.10 % | 1.10 2

L, [h— PPl /[[Alle | 2.8% | 7.6% | 13.2% | 23.4%
T, A= b/l | 2.9% | 53% | 10.2% | 17.4%
ZGV, [[h— hPP[ o /[l | 1.7% | 2.3% | 5.7% | 8.2%

Table: Relative errors on the reconstruction for increasing values of ||A’||
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O Ongoing projects
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Piecewise constant widths

Aim: Generalize the use of locally resonances for any variation of
the width. We are especially interested in piecewise constant

widths.
0.1 0.3
0.2
0.1
E— -2 0 2 4 0

Figure: Numerical simulation of the wavefield propagation in a waveguide
with width steps.

» Ongoing collaboration with Institut Langevin (Claire Prada,
Daniel Kieffer, Francois Legrand).
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3D acoustic waveguides

Aim: Extend the method to the 3D acoustic case to recover
complex width defects.

= We should be able to recover a part of the spectrum
(An(X))n=1,...,n) for each section

= We need to find a link between these data and the width A

Figure: Sections of a perturbed 3D acoustic waveguide

» Ongoing collaboration with Saint Gobain Research Paris
(Marion Perrodin).
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Torsional waves in thin elastic cylinders

Aim: Reconstruct inhomogeneities and width defects in thin elastic
cylinders. We expect to do this using thin layers approximations.

€r
€z

Figure: Modeling of a thin elastic cylinder where torsional waves are
propagating.

» Work in progress with Eric Soccorsi (Aix Marseille University).
Ongoing collaboration with LTDS (Olivier Bareille, Mohamed
Kharrat).
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Passive imaging of a randomly perturbed medium

Aim: Better understand how to reconstruct certain parameters of
the Earth’s layer using tails of seismographs.

onde directe
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for K”“

e
onde diffractée onde réfiéchi

Figure: Modeling of the first Earth's layer as a waveguide.

» Work in progress with Josselin Garnier (Ecole Polytechnique).

33/34



Perfect waveguides and resonances Perturbed waveguide

[e]e]e]e]e]e]

00000000000

Thank you for your attention!
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